LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Subfemtogram Simultaneous Elemental Detection in Multicomponent Nanomatrices Using Laser-Induced Plasma Emission Spectroscopy within Atmospheric Pressure Optical Traps.

Photo from wikipedia

Simultaneous detection of multiple constituents in the characterization of state-of-the-art nanomaterials is an elusive topic to a majority of the analytical techniques covering the field of nanotechnology. Optical catapulting (OC)… Click to show full abstract

Simultaneous detection of multiple constituents in the characterization of state-of-the-art nanomaterials is an elusive topic to a majority of the analytical techniques covering the field of nanotechnology. Optical catapulting (OC) and optical trapping (OT) have recently been combined with laser-induced breakdown spectroscopy (LIBS) to provide single-nanoparticle resolution and attogram detection power. In the present work, the multielemental capabilities of this approach are demonstrated by subjecting two different types of nanometric ferrite particles to LIBS analysis. Up to three metallic elements in attogram quantities are consistently detected within single laser events. Individual excitation efficiency for each species is quantified from particle spectra showing an exponential correlation between photon production and the energy of the upper level of the monitored atomic line. Moreover, a new sampling strategy based in skimmer-like 3D printed cones that allows for thin dry nanoparticle aerosols to be formed via optical catapulting is introduced. Enhanced sampling resulted in an increase of the sampling throughput by facilitating stable atmospheric-pressure optical trapping of individual particles and spectroscopic chemical characterization within a short timeframe.

Keywords: detection; laser induced; spectroscopy; pressure optical; atmospheric pressure

Journal Title: Analytical chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.