LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fully Automated Online Dynamic In-Tube Extraction for Continuous Sampling of Volatile Organic Compounds in Air

Photo from wikipedia

Comprehensive and time-dependent information (e.g., chemical composition, concentration) of volatile organic compounds (VOCs) in atmospheric, indoor, and breath air is essential to understand the fundamental science of the atmosphere, air… Click to show full abstract

Comprehensive and time-dependent information (e.g., chemical composition, concentration) of volatile organic compounds (VOCs) in atmospheric, indoor, and breath air is essential to understand the fundamental science of the atmosphere, air quality, and diseases diagnostic. Here, we introduced a fully automated online dynamic in-tube extraction (ITEX)–gas chromatography/mass spectrometry (GC/MS) method for continuous and quantitative monitoring of VOCs in air. In this approach, modified Cycle Composer software and a PAL autosampler controlled and operated the ITEX preconditioning, internal standard (ISTD) addition, air sampling, and ITEX desorption sequentially to enable full automation. Air flow passed through the ITEX with the help of an external pump, instead of plunger up–down strokes, to allow larger sampling volumes, exhaustive extraction, and consequently lower detection limits. Further, in order to evaluate the ITEX system stability and to develop the corresponding quantitative ITEX method, two laboratory-made permeation systems (for standard VOCs and ISTD) were constructed. The stability and suitability of the developed system was validated with a consecutive 19 day atmospheric air campaign under automation. By using an electrospun polyacrylonitrile nanofibers packed ITEX, selective extraction of some VOCs and durability of over 1500 extraction and desorption cycles were achieved. Especially, the latter step is critically important for on-site long-term application at remote regions. This ITEX method provided 2–3 magnitudes lower quantitation limits than the headspace dynamic ITEX method and other needle trap methods. Our results proved the excellence of the fully automated online dynamic ITEX–GC/MS system for tracking VOCs in the atmospheric air.

Keywords: automated online; extraction; volatile organic; online dynamic; fully automated; air

Journal Title: Analytical Chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.