A facile solvothermal method was developed for synthesis of magnetic nickel-based iron oxide nanocomposites (MNFOs) with different ratios of Ni2+ to Fe3+ for different reaction time. Two factors including dosage… Click to show full abstract
A facile solvothermal method was developed for synthesis of magnetic nickel-based iron oxide nanocomposites (MNFOs) with different ratios of Ni2+ to Fe3+ for different reaction time. Two factors including dosage of Ni source and length of reaction were investigated for influence on the morphology and composition of MNFOs, as well as their distinct selectivity for different phosphopeptides. After thorough characterization, the possible formation mechanism of MNFOs was proposed. Very interestingly, MNFOs with Ni2+/Fe3+ ratios of 4:5 prepared for 8 h (MNFO-S) and for 24 h (MNFO-L) can selectively capture global- and mono-phosphopeptides, at fmol level with excellent enrichment performance. These two affinity probes have been exploited to isolate and enrich the phosphopeptides from human normal hepatic cells HL 7702 after exposure to atmospheric fine particulates (PM2.1), which revealed that the protein phosphorylation level was increased significantly in cells after stimulation by fine particulate matters. The findings could provide a new insight for the nickel-based affinity protocol to analyze the mutation of phosphopeptides during cellular signaling pathways in response to exogenous environment stimulation. Consequently, this present work proposed a promising strategy to isolate mono-phosphopeptides from global phosphopeptides for phosphoproteome research.
               
Click one of the above tabs to view related content.