LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In situ Fluorescent and Photoacoustic Imaging of Golgi pH to Elucidate the Function of Transmembrane Protein 165.

Photo from wikipedia

Golgi pH homeostasis affects many different biological processes, including glycosylation. Recent studies have demonstrated that transmembrane protein 165 (TMEM165) deficiency leads to Golgi glycosylation abnormalities by disturbing Golgi pH homeostasis.… Click to show full abstract

Golgi pH homeostasis affects many different biological processes, including glycosylation. Recent studies have demonstrated that transmembrane protein 165 (TMEM165) deficiency leads to Golgi glycosylation abnormalities by disturbing Golgi pH homeostasis. However, due to the lack of specific tools to measure Golgi pH in situ, evidence for TMEM165 involvement in H+ transport in the Golgi apparatus is still absent. Herein, the photoacoustic and fluorescent dual-mode probe CPH was developed for ratiometric detection of Golgi pH. CPH was proved to accumulate in the Golgi apparatus and reversibly image Golgi pH in real-time with high sensitivity in cells. Furthermore, we found that the absence of TMEM165 influenced H+ equilibrium and cause Golgi apparatus acidification. Our work provides strong evidence that TMEM165 regulates Golgi pH homeostasis. Moreover, we believe that CPH has the potential to be a practical tool to monitor Golgi pH in various biological processes.

Keywords: golgi; golgi homeostasis; protein 165; golgi apparatus; transmembrane protein

Journal Title: Analytical chemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.