LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Fold Type II PLP-Dependent Enzyme from Fusobacterium nucleatum Functions as a Serine Synthase and Cysteine Synthase.

Photo from wikipedia

Serine synthase (SS) from Fusobacterium nucleatum is a fold type II pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the β-replacement of l-cysteine with water to form l-serine and H2S. Herein, we… Click to show full abstract

Serine synthase (SS) from Fusobacterium nucleatum is a fold type II pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the β-replacement of l-cysteine with water to form l-serine and H2S. Herein, we show that SS can also function as a cysteine synthase, catalyzing the β-replacement of l-serine with bisulfide to produce l-cysteine and H2O. The forward (serine synthase) and reverse (cysteine synthase) reactions occur with comparable turnover numbers and catalytic efficiencies for the amino acid substrate. Reaction of SS with l-cysteine leads to transient formation of a quinonoid species, suggesting that deprotonation of the Cα and β-elimination of the thiolate group from l-cysteine occur via a stepwise mechanism. In contrast, the quinonoid species was not detected in the formation of the α-aminoacrylate intermediate following reaction of SS with l-serine. A key active site residue, D232, was shown to stabilize the more chemically reactive ketoenamine PLP tautomer and also function as an acid/base catalyst in the forward and reverse reactions. Fluorescence resonance energy transfer between PLP and W99, the enzyme's only tryptophan residue, supports ligand-induced closure of the active site, which shields the PLP cofactor from the solvent and increases the basicity of D232. These results provide new insight into amino acid metabolism in F. nucleatum and highlight the multiple catalytic roles of D232 in a new member of the fold type II family of PLP-dependent enzymes.

Keywords: synthase; cysteine; fold type; serine synthase; plp dependent

Journal Title: Biochemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.