LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Inhibitory Effects of Mismatch Binding Molecules on the Repair Reaction of Uracil-Containing DNA.

Photo by anniespratt from unsplash

The stable R-loop formed during transcription induces enzyme-mediated deamination of cytosine, and the uracil in the DNA produced activates the base excision repair (BER) pathway. DNA cleavage involved in the… Click to show full abstract

The stable R-loop formed during transcription induces enzyme-mediated deamination of cytosine, and the uracil in the DNA produced activates the base excision repair (BER) pathway. DNA cleavage involved in the BER pathway is thought to be one of the possible causes of trinucleotide repeat instability. Here, we performed an in vitro assay to investigate the effect of a DNA-binding small molecule, naphthyridine carbamate dimer (NCD), on BER enzyme reactions. The gel electrophoretic mobility shift assay (EMSA) and thermal melting analysis revealed the binding of NCD to a 5'-XGG-3'/5'-XGG-3' triad (X = C or U or apurinic/apyrimidinic site), which is a mimic of a BER enzyme substrate. Polyacrylamide gel electrophoresis (PAGE) of the reaction products of these substrates with hSMUG1 and APE1 enzymes in the presence of NCD showed that NCD interfered with the repair reaction in the 5'-XGG-3'/5'-XGG-3' triad. These findings would broaden the potential of small molecules in modulating trinucleotide repeat instability.

Keywords: mismatch binding; inhibitory effects; xgg; reaction; repair reaction; effects mismatch

Journal Title: Biochemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.