The emergence of resistance in Plasmodium falciparum to frontline artemisinin-based combination therapies has raised global concerns and emphasized the identification of new drug targets for malaria. Cysteine protease falcipain-2 (FP2),… Click to show full abstract
The emergence of resistance in Plasmodium falciparum to frontline artemisinin-based combination therapies has raised global concerns and emphasized the identification of new drug targets for malaria. Cysteine protease falcipain-2 (FP2), involved in host hemoglobin degradation and instrumental in parasite survival, has long been proposed as a promising malarial drug target. However, designing active-site-targeted small-molecule inhibitors of FP2 becomes challenging due to their off-target specificity toward highly homologous human cysteine cathepsins. The use of proteinaceous inhibitors, which have nonconserved exosite interactions and larger interface area, can effectively circumvent this problem. In this study, we report for the first time that human stefin-A (STFA) efficiently inhibits FP2 with Ki values in the nanomolar range. The FP2-STFA complex crystal structure, determined in this study, and sequence analyses identify a unique nonconserved exosite interaction, compared to human cathepsins. Designing a mutation Lys68 > Arg in STFA amplifies its selectivity garnering a 3.3-fold lower Ki value against FP2, and the crystal structure of the FP2-STFAK68R complex shows stronger electrostatic interaction between side-chains of Arg68 (STFAK68R) and Asp109 (FP2). Comparative structural analyses and molecular dynamics (MD) simulation studies of the complexes further confirm higher buried surface areas, better interaction energies for FP2-STFAK68R, and consistency of the newly developed electrostatic interaction (STFA-R68-FP2-D109) in the MD trajectory. The STFA-K68R mutant also shows higher Ki values against human cathepsin-L and stefin, a step toward eliminating off-target specificity. Hence, this work underlines the design of host-based proteinaceous inhibitors against FP2, with further optimization to render them more potent and selective.
               
Click one of the above tabs to view related content.