LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Random-Sequential Kinetic Mechanism for Polysaccharide Monooxygenases.

Photo by bermixstudio from unsplash

Polysaccharide monooxygenases (PMOs) are mononuclear copper enzymes that catalyze the hydroxylation of polysaccharides leading to the scission of the glycosidic bond. The mechanism, in which PMOs utilize molecular oxygen to… Click to show full abstract

Polysaccharide monooxygenases (PMOs) are mononuclear copper enzymes that catalyze the hydroxylation of polysaccharides leading to the scission of the glycosidic bond. The mechanism, in which PMOs utilize molecular oxygen to oxidize the polysaccharide substrate, still remains largely unknown. Here, steady-state kinetics assays were used to probe the mechanism of oxygen-dependent cellohexaose oxidation catalyzed by MtPMO9E. Kinetic analysis indicated that both kcat/ KM(O2) and kcat/ KM(Glc6) were dependent on the concentration of the second substrate. Inhibition studies using carbon monoxide were also carried out. In addition, KD values for Glc6 were determined for the Cu(I) and Cu(II) forms of the enzyme. Taken together, PMOs follow a random-sequential kinetic mechanism to form a ternary ES-O2 complex. The optimal pH for MtPMO9E turnover was determined to be between pH 6.00 and pH 7.00. Furthermore, the kinetic parameters kcat, kcat/ KM(O2), and kcat/ KM(Glc6) demonstrate a decrease in PMO activity at a low pH and provide equivalent kinetic p Ka's of 5.10. This points to the protonation of a general base required for turnover. These results provide a basis for the initial chemical steps in the mechanism of PMOs.

Keywords: mechanism; random sequential; polysaccharide; sequential kinetic; polysaccharide monooxygenases; kinetic mechanism

Journal Title: Biochemistry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.