Inducible chemical-genetic fluorescent markers are promising tools for live cell imaging requiring high spatiotemporal resolution and low background fluorescence. The fluorescence-activating and absorption shifting tag (FAST) was recently developed to… Click to show full abstract
Inducible chemical-genetic fluorescent markers are promising tools for live cell imaging requiring high spatiotemporal resolution and low background fluorescence. The fluorescence-activating and absorption shifting tag (FAST) was recently developed to form fluorescent molecular complexes with a family of small, synthetic fluorogenic chromophores (so-called fluorogens). Here, we use rational design to modify the binding pocket of the protein and screen for improved fluorescence performances with four different fluorogens. The introduction of a single mutation results in improvements in both quantum yield and dissociation constant with nearly all fluorogens tested. Our improved FAST (iFAST) allowed the generation of a tandem iFAST (td-iFAST) that forms green and red fluorescent reporters 1.6-fold and 2-fold brighter than EGFP and mCherry, respectively, while having a comparable size.
               
Click one of the above tabs to view related content.