LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Identification of Fatty Acid Binding Protein 5 Inhibitors Through Similarity-Based Screening

Photo from wikipedia

Fatty acid binding protein 5 (FABP5) is a promising target for development of inhibitors to help control pain and inflammation. In this work, computer-based docking (DOCK6 program) was employed to… Click to show full abstract

Fatty acid binding protein 5 (FABP5) is a promising target for development of inhibitors to help control pain and inflammation. In this work, computer-based docking (DOCK6 program) was employed to screen ∼2 M commercially available compounds to FABP5 based on an X-ray structure complexed with the small molecule inhibitor SBFI-26 previously identified by our group (also through virtual screening). The goal was discovery of additional chemotypes. The screen resulted in the purchase of 78 candidates, which led to the identification of a new inhibitor scaffold (STK-0) with micromolar affinity and apparent selectivity for FABP5 over FABP3. A second similarity-based screen resulted in three additional hits (STK-15, STK-21, STK-22) from which preliminary SAR could be derived. Notably, STK-15 showed comparable activity to the SBFI-26 reference under the same assay conditions (1.40 vs 0.86 μM). Additional molecular dynamics simulations, free energy calculations, and structural analysis (starting from DOCK-generated poses) revealed that R enantiomers (dihydropyrrole scaffold) of STK-15 and STK-22 have a more optimal composition of functional groups to facilitate additional H-bonds with Arg109 of FABP5. This observation suggests enantiomerically pure compounds could show enhanced activity. Overall, our study highlights the utility of using similarity-based screening methods to discover new inhibitor chemotypes, and the identified FABP5 hits provide a strong starting point for future efforts geared to improve activity.

Keywords: similarity based; similarity; fatty acid; acid binding; binding protein; based screening

Journal Title: Biochemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.