LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Supramolecular Encapsulation of Small-Ultra Red Fluorescent Proteins in Virus-Like Nanoparticles for Non-Invasive In Vivo Imaging Agents.

Photo from wikipedia

Icosahedral virus-like particles (VLPs) derived from bacteriophages Qβ and PP7 encapsulating small-ultra red fluorescent protein (smURFP) were produced using a versatile supramolecualr capsid dissassemble-reassemble approach. The generated fluorescent VLPs display… Click to show full abstract

Icosahedral virus-like particles (VLPs) derived from bacteriophages Qβ and PP7 encapsulating small-ultra red fluorescent protein (smURFP) were produced using a versatile supramolecualr capsid dissassemble-reassemble approach. The generated fluorescent VLPs display identical structural properties to their non-fluorescent analogs. Encapsulated smURFP shows indistinguishable photochemical properties to its unencapsulated counterpart, exhibits outstanding stability towards pH, and produces bright in vitro images following phagocytosis by macrophages. In vivo imaging allows biodistribution to be imaged at different time points. Ex vivo imaging of intravenously administered encapsulated smURFP reveleas localization in the liver and kidneys after 2 h blood circulation and substantial elimination constructs as non-invasive in vivo imaging agents.

Keywords: virus like; ultra red; vivo imaging; small ultra; non invasive; red fluorescent

Journal Title: Bioconjugate chemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.