LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

EGFR Ligand Clustering on E2 Bionanoparticles for Targeted Delivery of Chemotherapeutics to Breast Cancer Cells.

Photo by nci from unsplash

Naturally occurring protein nanocages are promising drug carriers because of their uniform size and biocompatibility. Engineering efforts have enhanced the delivery properties of nanocages, but cell specificity and high drug… Click to show full abstract

Naturally occurring protein nanocages are promising drug carriers because of their uniform size and biocompatibility. Engineering efforts have enhanced the delivery properties of nanocages, but cell specificity and high drug loading remain major challenges. Herein, we fused the SpyTag peptide to the surface of engineered E2 nanocages to enable tunable nanocage decoration and effective E2 cell targeting using a variety of SpyCatcher (SC) fusion proteins. Additionally, the core of the E2 nanocage incorporated four phenylalanine mutations previously shown to allow hydrophobic loading of doxorubicin and pH-responsive release in acidic environments. We functionalized the surface of the nanocage with a highly cell-specific epidermal growth factor receptor (EGFR)-targeting protein conjugate, 4GE11-mCherry-SC, developed previously in our laboratories by employing unnatural amino acid (UAA) protein engineering chemistries. Herein, we demonstrated the benefits of this engineered protein nanocage construct for efficient drug loading, with a straightforward method for removal of the unloaded drug through elastin-like polypeptide-mediated inverse transition cycling. Additionally, we demonstrated approximately 3-fold higher doxorubicin internalization in inflammatory breast cancer cells compared to healthy breast epithelial cells, leading to targeted cell death at concentrations below the IC50 of free doxorubicin. Collectively, these results demonstrated the versatility of our UAA-based EGFR-targeting protein construct to deliver a variety of cargoes efficiently, including engineered E2 nanocages capable of site-specific functionalization and doxorubicin loading.

Keywords: breast; cancer cells; drug; breast cancer; delivery; nanocage

Journal Title: Bioconjugate chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.