LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

“Clickable” Polymer Brush Interfaces: Tailoring Monovalent to Multivalent Ligand Display for Protein Immobilization and Sensing

Photo from wikipedia

Facile and effective functionalization of the interface of polymer-coated surfaces allows one to dictate the interaction of the underlying material with the chemical and biological analytes in its environment. Herein,… Click to show full abstract

Facile and effective functionalization of the interface of polymer-coated surfaces allows one to dictate the interaction of the underlying material with the chemical and biological analytes in its environment. Herein, we outline a modular approach that would enable installing a variety of “clickable” handles onto the surface of polymer brushes, enabling facile conjugation of various ligands to obtain functional interfaces. To this end, hydrophilic anti-biofouling poly(ethylene glycol)-based polymer brushes are fabricated on glass-like silicon oxide surfaces using reversible addition–fragmentation chain transfer (RAFT) polymerization. The dithioester group at the chain-end of the polymer brushes enabled the installation of azide, maleimide, and terminal alkene functional groups, using a post-polymerization radical exchange reaction with appropriately functionalized azo-containing molecules. Thus, modified polymer brushes underwent facile conjugation of alkyne or thiol-containing dyes and ligands using alkyne–azide cycloaddition, Michael addition, and radical thiol–ene conjugation, respectively. Moreover, we demonstrate that the radical exchange approach also enables the installation of multivalent motifs using dendritic azo-containing molecules. Terminal alkene groups containing dendrons amenable to functionalization with thiol-containing molecules using the radical thiol–ene reaction were installed at the interface and subsequently functionalized with mannose ligands to enable sensing of the Concanavalin A lectin.

Keywords: thiol; polymer; clickable polymer; containing molecules; polymer brushes; multivalent

Journal Title: Bioconjugate Chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.