LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ferritin Nanocages with Biologically Orthogonal Conjugation for Vascular Targeting and Imaging.

Photo from wikipedia

Genetic incorporation of biologically orthogonal functional groups into macromolecules has the potential to yield efficient, controlled, reproducible, site-specific conjugation of affinity ligands, contrast agents, or therapeutic cargoes. Here, we applied… Click to show full abstract

Genetic incorporation of biologically orthogonal functional groups into macromolecules has the potential to yield efficient, controlled, reproducible, site-specific conjugation of affinity ligands, contrast agents, or therapeutic cargoes. Here, we applied this approach to ferritin, a ubiquitous iron-storage protein that self-assembles into multimeric nanocages with remarkable stability, size uniformity (12 nm), and endogenous capacity for loading and transport of a variety of inorganic and organic cargoes. The unnatural amino acid, 4-azidophenylalanine (4-AzF), was incorporated at different sites in the human ferritin light chain (hFTL) to allow site-specific conjugation of alkyne-containing small molecules or affinity ligands to the exterior surface of the nanocage. The optimal positioning of the 4-AzF residue was evaluated by screening a library of variants for the efficiency of copper-free click conjugation. One of the engineered ferritins, hFTL-5X, was found to accommodate ∼14 small-molecule fluorophores (AlexaFluor 488) and 3-4 IgG molecules per nanocage. Intravascular injection in mice of radiolabeled hFTL-5X carrying antibody to cell adhesion molecule ICAM-1, but not control IgG, enabled specific targeting to the lung due to high basal expression of ICAM-1 (43.3 ± 6.99 vs 3.48 ± 0.14%ID/g for Ab vs IgG). Treatment of mice with endotoxin known to stimulate inflammatory ICAM-1 overexpression resulted in 2-fold enhancement of pulmonary targeting (84.4 ± 12.89 vs 43.3 ± 6.99%ID/g). Likewise, injection of fluorescent, ICAM-targeted hFTL-5X nanocages revealed the effect of endotoxin by enhancement of near-infrared signal, indicating potential utility of this approach for both vascular targeting and imaging.

Keywords: targeting imaging; vascular targeting; ferritin; icam; biologically orthogonal; conjugation

Journal Title: Bioconjugate chemistry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.