LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biological route to fabricate silica on cellulose using immobilized silicatein fused with a carbohydrate-binding module.

Photo from wikipedia

Silicatein is an enzyme capable of catalyzing silica formation under mild conditions and is a promising catalyst for the fabrication of biohybrid materials. However, unfavorable aggregation of silicatein makes it… Click to show full abstract

Silicatein is an enzyme capable of catalyzing silica formation under mild conditions and is a promising catalyst for the fabrication of biohybrid materials. However, unfavorable aggregation of silicatein makes it unsuitable for use in material fabrication. In this study, a soluble protein tag (ProS2) and a carbohydrate-binding module (CBM) were used to develop a soluble and cellulose-binding fusion silicatein, ProS2-Sil-CBM, which can be efficiently immobilized on cellulose to form silica on it. ProS2-Sil-CBM was soluble in aqueous media and strongly bound to cellulose. ProS2-Sil-CBM bound on cellulose catalyzed the formation of a silica layer on the cellulose in presence of tetraethyl orthosilicate as the substrate. Scanning electron microscopy (SEM) and surface elemental analysis confirmed the formation of silica on cellulose. This technique can be used to fabricate inorganic-organic hybrid materials to immobilize biomolecules and can be applied to develop novel biocatalytic systems, biosensors, and tissue culture scaffolds.

Keywords: silica cellulose; silica; carbohydrate binding; binding module

Journal Title: Biomacromolecules
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.