C-reactive protein (CRP) is widely used as biomarkers of infection and inflammation. It has a well-described ability to bind phosphocholine (PC), as well as PC-clusters from compromised and inflamed cell… Click to show full abstract
C-reactive protein (CRP) is widely used as biomarkers of infection and inflammation. It has a well-described ability to bind phosphocholine (PC), as well as PC-clusters from compromised and inflamed cell membranes and tissues. The binding of PC-clusters to CRP is of interest as this binding determines subsequent innate immune activity. We investigated PC-decorated dendrimers as mimics for PC-clusters. Five generations of poly(propylene imine) (PPI) dendrimers were modified with PC surface groups via a three-step synthetic sequence obtaining the PC-decorated dendrimers in high purity. The dendrimers were analyzed by NMR and infrared spectroscopy as well as HPLC. We developed immunoassays to show that dendrimer-PC binding to CRP was Ca2+-dependent with an apparent overall Kd of 11.9 nM for first generation (G1) PPI-PC, while G2-PPI-PC and G3-PPI-PC had slightly higher affinities, and G4-PPI-PC and G5-PPI-PC had slightly lower affinities. For all PC-dendrimers, the affinity was orders of magnitude higher than the affinity of free phosphocholine (PC), indicating a PC-cluster effect. Next, we investigated the binding of CRP:PPI-PC complexes to complement component C1q. C1q binding to CRP was dependent on the generation of PPI-PC bound to CRP, with second and third generation PPI-PCs leading to the highest affinity. The dendrimer-based approach to PC-cluster mimics and the simple binding assays presented here hold promise as tools to screen PC-compounds for their abilities to tune the innate immune activity of CRP.
               
Click one of the above tabs to view related content.