Matrix stiffness and fibrous structure provided by the native extracellular matrix have been increasingly appreciated as important cues in regulating cell behaviors. Recapitulating these physical cues for cell fate regulation… Click to show full abstract
Matrix stiffness and fibrous structure provided by the native extracellular matrix have been increasingly appreciated as important cues in regulating cell behaviors. Recapitulating these physical cues for cell fate regulation remains a challenge due to the inherent difficulties in making mimetic hydrogels with well-defined compositions, tunable stiffness, and structures. Here, we present two series of fibrous and porous hydrogels with tunable stiffness based on genetically engineered resilin-silk-like and resilin-like protein polymers. Using these hydrogels as substrates, the mechanoresponses of bone marrow mesenchymal stem cells to stiffness and fibrous structure were systematically studied. For both hydrogel series, increasing compression modulus from 8.5 to 14.5 and 23 kPa consistently promoted cell proliferation and differentiation. Nonetheless, the promoting effects were more pronounced on the fibrous gels than their porous counterparts at all three stiffness levels. More interestingly, even the softest fibrous gel (8.5 kPa) allowed the stem cells to exhibit higher endothelial differentiation capability than the toughest porous gel (23 kPa). The predominant role of fibrous structure on the synergistic regulation of endothelial differentiation was further explored. It was found that the stiffness signal activated Yes-associated protein (YAP), the main regulator of endothelial differentiation, via spreading of focal adhesions, whereas fibrous structure reinforced YAP activation by promoting the maturation of focal adhesions and associated F-actin alignment. Therefore, our results shed light on the interplay of physical cues in regulating stem cells and may guide the fabrication of designer proteinaceous matrices toward regenerative medicine.
               
Click one of the above tabs to view related content.