Biodegradable and biocompatible biomaterials have offered much more opportunities from an engineering standpoint for treating diseases and maintaining health. Poly(ester amide)s (PEAs), as an outstanding family among such biomaterials, have… Click to show full abstract
Biodegradable and biocompatible biomaterials have offered much more opportunities from an engineering standpoint for treating diseases and maintaining health. Poly(ester amide)s (PEAs), as an outstanding family among such biomaterials, have risen overwhelmingly in the past decades. These synthetic polymers have easily and widely available raw materials and a diversity of synthetic approaches, which have attracted considerable attention. More importantly, combining the superiorities of polyamides and polyesters, PEAs have emerged with better functions. They could have improved biodegradability, biocompatibility, and cell-material interactions. The PEAs derived from α-amino acids even allow the introduction of pendant sites for further modification or functionalization. Meanwhile, it is gradually recognized that the chemical structures are closely related to the physiochemical and biological properties of PEAs so that their properties can be precisely controlled. PEAs therefore become significant materials in the biomedical fields. This review will attempt to summarize the recent progress in the development of PEAs with respect to the preparation materials and methods, structure-property relationships along with their latest biomedical accomplishments, especially for drug delivery and tissue engineering.
               
Click one of the above tabs to view related content.