LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Room Temperature Fabrication of Macroporous Lignin Membranes for the Scalable Production of Black Silicon

Photo from wikipedia

Rising global demand for biodegradable materials and green sources of energy has brought attention to lignin. Herein, we report a method for manufacturing standalone lignin membranes without additives for the… Click to show full abstract

Rising global demand for biodegradable materials and green sources of energy has brought attention to lignin. Herein, we report a method for manufacturing standalone lignin membranes without additives for the first time to date. We demonstrate a scalable method for macroporous (∼100 to 200 nm pores) lignin membrane production using four different organosolv lignin materials under a humid environment (>50% relative humidity) at ambient temperatures (∼20 °C). A range of different thicknesses is reported with densely porous films observed to form if the membrane thickness is below 100 nm. The fabricated membranes were readily used as a template for Ni2+ incorporation to produce a nickel oxide membrane after UV/ozone treatment. The resultant mask was etched via an inductively coupled plasma reactive ion etch process, forming a silicon membrane and as a result yielding black silicon (BSi) with a pore depth of >1 μm after 3 min with reflectance <3% in the visible light region. We anticipate that our lignin membrane methodology can be readily applied to various processes ranging from catalysis to sensing and adapted to large-scale manufacturing.

Keywords: lignin membranes; lignin; black silicon; production; membrane

Journal Title: Biomacromolecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.