LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Surface Doping of Anionic Clusters Facilitated Direct Fabrication of Commercial Cellulose Nanofibrils for Long-Range Ordered Layer Structures.

Photo from wikipedia

The fabrication of commercial cellulose nanofibrils (CNFs) into arrays with long-range ordering is of great significance for their extended applications, which, however, is severely hindered by their high disorder, aggregation,… Click to show full abstract

The fabrication of commercial cellulose nanofibrils (CNFs) into arrays with long-range ordering is of great significance for their extended applications, which, however, is severely hindered by their high disorder, aggregation, and hornified features. Herein, sub-nanoscale anionic metal oxide clusters (phosphotungstic acid, H3PW12O40, PTA) are applied to complex with commercial CNFs (dried powder DCNF and aqueous suspension WCNF) in aqueous media, and a long-range ordered layer structure can be facilely fabricated via typical unidirectional freezing. The surface complexation of the commercial CNFs and PTA can be confirmed through the small-angle scattering studies of the complex hydrogels. The hydrogels present similar correlation lengths in small-angle X-ray and neutron scattering measurements, suggesting the homogeneous distribution of PTA along the commercial CNFs. This gives rise to the negatively charged surface feature and further leads to strong repulsion among the commercial CNFs. Due to the disparity in sizes, the influence of PTA on the density of hydrogel networks is suppressed, and the network density is mainly dependent on the mass content of CNFs. The studies provide guidance to fabricate hydrogels with catalytic and photosensitive properties and also to design and stabilize long-range ordered structured aerogels during the removal of the nonfreezing bound water absorbed by the commercial CNFs after unidirectional freezing. This facile strategy shows great potential to broaden the application of commercial CNFs in thermal insulators, super-adsorbent materials, and supercapacitors in electrical devices.

Keywords: cnfs; range ordered; long range; commercial cnfs; fabrication commercial

Journal Title: Biomacromolecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.