LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bioinspired Optical Flexible Cellulose Nanocrystal Films with Strain-Adaptive Structural Coloration.

Photo from wikipedia

Recent advances of photonic crystals are driven to mechanical sensors and smart wearable devices; however, for chiral photonic cellulose nanocrystal (CNC) materials, vivid structural coloration and reversible mechanochromism like chameleon… Click to show full abstract

Recent advances of photonic crystals are driven to mechanical sensors and smart wearable devices; however, for chiral photonic cellulose nanocrystal (CNC) materials, vivid structural coloration and reversible mechanochromism like chameleon skin remain a big challenge. Here, we report a ternary co-assembly and post-UV-irradiation polymerization strategy to develop flexible and elastic CNC composite films, which, notably, have naked-eye-visible brilliant structural colors and stretching-induced color change covering a broad wavelength region at a moderate deformation (like skin). By adjusting the stretching, the film is designed as a smart skin to adapt to surrounding environments for camouflage. This work offers a universal strategy for constructing biomimic optically functional cellulose skins.

Keywords: structural coloration; optical flexible; bioinspired optical; cellulose; cellulose nanocrystal

Journal Title: Biomacromolecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.