LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Intrinsic Fluorescence in Peptide Amphiphile Micelles with Protein-Inspired Phosphate Sensing

Photo by nci from unsplash

Although peptide amphiphile micelles (PAMs) have been widely studied since they were developed in the late 1990s, to the author’s knowledge, there have been no reports that PAMs intrinsically fluoresce… Click to show full abstract

Although peptide amphiphile micelles (PAMs) have been widely studied since they were developed in the late 1990s, to the author’s knowledge, there have been no reports that PAMs intrinsically fluoresce without a fluorescent tag, according to the aggregation-induced emission (AIE) effect. This unexpected fluorescence behavior adds noteworthy value to both the peptide amphiphile and AIE communities. For PAMs, intrinsic fluorescence becomes another highly useful feature to add to this well-studied material platform that features precise synthetic control, tunable self-assembly, and straightforward functionalization, with clear potential applications in bioinspired materials for bioimaging and fluorescent sensing. For AIE, it is extremely rare and highly desirable for one platform to exhibit precise tunability on multiple length scales in aqeuous solutions, positioning PAMs as uniquely well-suited for systematic AIE mechanistic study and sequence-specific functionalization for bioinspired AIE applications. In this work, the author proposes that AIE occurs across intermolecular emissive pathways created by the closely packed peptide amide bonds in the micelle corona upon self-assembly, with maximum excitation and emission wavelengths of 355 and 430 nm, respectively. Of the three PAMs evaluated here, the PAM with tightly packed random coil peptide conformation and maximum peptide length had the largest quantum yield, indicating that tuning molecular design can further optimize the intrinsic emissive properties of PAMs. To probe the sensing capabilities of AIE PAMs, a PAM was designed to incorporate a protein-derived phosphate-binding sequence. It detected phosphate down to 1 ppm through AIE-enhanced second-order aggregation, demonstrating that AIE in PAMs leverages tunable biomimicry to perform protein-inspired sensing.

Keywords: aie; protein inspired; intrinsic fluorescence; amphiphile micelles; peptide amphiphile; fluorescence

Journal Title: Biomacromolecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.