LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermosensitive Polymer Conjugated Prodrug-Activating Enzyme with Enhanced Tumor Retention and Antitumor Efficacy.

Photo by nci from unsplash

Enzyme-activated prodrug therapy has emerged as an effective strategy for cancer therapy. However, the inefficient delivery of prodrug-activating enzymes into tumor tissues leads to unsatisfactory antitumor efficacy and undesirable toxicity… Click to show full abstract

Enzyme-activated prodrug therapy has emerged as an effective strategy for cancer therapy. However, the inefficient delivery of prodrug-activating enzymes into tumor tissues leads to unsatisfactory antitumor efficacy and undesirable toxicity to normal tissues. Herein, we report in situ growth of a thermosensitive polymer of poly(diethylene glycol) methyl ether methacrylate (PDEGMA) from horseradish peroxidase (HRP) to yield a HRP-PDEGMA conjugate with well-retained activity as compared to HRP. The conjugate shows a sharp phase transition behavior with a lower critical solution temperature of 23 °C. The conjugate catalyzes the conversion of non-cytotoxic indole-3-acetic acid (IAA) into cytotoxic species for killing tumor cells. Notably, the PDEGMA conjugation not only increases the stability and cellular uptake of HRP but also prolongs the tumor retention time of HRP upon intratumoral injection. As a result, in mice bearing melanoma, the conjugate inhibits the growth of melanoma much more efficiently than HRP. These results demonstrate that the thermosensitive polymer conjugation of an enzyme is an effective strategy that can enhance the antitumor efficacy of an enzyme-activated prodrug.

Keywords: antitumor efficacy; tumor; thermosensitive polymer

Journal Title: Biomacromolecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.