LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Metal-Enhanced Helical Chirality of Coil Macromolecules: Bioinspired by Metal Coordination-Induced Protein Folding.

Photo from wikipedia

Although the supramolecular helical structures of biomacromolecules have been studied, the examples of supramolecular systems that are assembled using coils to form helical polymer chains are still limited. Inspired by… Click to show full abstract

Although the supramolecular helical structures of biomacromolecules have been studied, the examples of supramolecular systems that are assembled using coils to form helical polymer chains are still limited. Inspired by enhanced helical chirality at the supramolecular level in metal coordination-induced protein folding, a series of alanine-based coil copolymers (poly-(l-co-d)-ala-NH2) carrying (l)- and (d)-alanine pendants were synthesized as a fresh research model to study the cooperative processes between homochirality property and metal coordination. The complexes of poly-(l-co-d)-ala-NH2 and metal ions underwent a coil-to-helix transition and exhibited remarkable nonlinear effects based on the enantiomeric excess of the monomer unit in the copolymers, affording enhanced helical chirality compared to poly-(l-co-d)-ala-NH2. More importantly, the synergistic effect of amplification of asymmetry and metal coordination triggered the formation of a helical molecular orbital on the polymer backbone via the coordination with the d orbital of copper ions. Thus, the helical chirality enhancement degree of poly-(l-co-d)-ala-NH2/Cu2+ complexes (31.4) is approximately 3 times higher than that of poly-(l-co-d)-ala-NH2/Ag+ complexes (9.8). This study not only provides important mechanistic insights into the enhancement of helical chirality for self-assembly but also establishes a new strategy for studying the homochiral amplification of asymmetry in biological supramolecular systems.

Keywords: helical chirality; metal coordination; chirality; enhanced helical

Journal Title: Biomacromolecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.