LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient Isolation Method for Highly Charged Phosphorylated Cellulose Nanocrystals

Photo from wikipedia

Phosphorylation of cellulose nanocrystals (CNCs) has remained a marginal activity despite the undisputed application potential in flame-retardant materials, sustainable high-capacity ion-exchange materials, or substrates for biomineralization among others. This is… Click to show full abstract

Phosphorylation of cellulose nanocrystals (CNCs) has remained a marginal activity despite the undisputed application potential in flame-retardant materials, sustainable high-capacity ion-exchange materials, or substrates for biomineralization among others. This is largely due to strenuous extraction methods prone to a combination of poor reproducibility, low degrees of substitution, disappointing yields, and impractical reaction sequences. Here, we demonstrate an improved methodology relying on the modification routines for phosphorylated cellulose nanofibers and hydrolysis by gaseous HCl to isolate CNCs. This allows us to overcome the aforementioned shortcomings and to reliably and reproducibly extract phosphorylated CNCs with exceptionally high surface charge (∼2000 mmol/kg) in a straightforward routine that minimizes water consumption and maximizes yields. The CNCs were characterized by NMR, ζpotential, conductometric titration, thermogravimetry, elemental analysis, wide-angle X-ray scattering, transmission electron microscopy, and atomic force microscopy.

Keywords: phosphorylated cellulose; efficient isolation; method highly; isolation method; microscopy; cellulose nanocrystals

Journal Title: Biomacromolecules
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.