LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tunable Upper Critical Solution Temperatures for Acrylamide Copolymers with Bile Acid Pendants.

Photo by sxy_selia from unsplash

Acrylamide derivatives of bile acids are chosen as a hydrophobic comonomer to copolymerize with acrylamide via reversible addition and fragmentation chain transfer (RAFT) polymerization to afford a series of copolymers… Click to show full abstract

Acrylamide derivatives of bile acids are chosen as a hydrophobic comonomer to copolymerize with acrylamide via reversible addition and fragmentation chain transfer (RAFT) polymerization to afford a series of copolymers of P(AAm-co-CAA). These copolymers exhibit a sharp and reversible insoluble-soluble transition in water upon heating to a mixing temperature (Tmix) related to the upper critical solution temperature (UCST). Tmix of these copolymers can be conveniently tuned to a practical temperature range, around 37 °C for biomedical applications. Tmix rises with increasing molar fraction of the bile acid-based acrylamide and increasing concentration of the aqueous solution of the copolymers. The addition of a natural host molecule β-cyclodextrin lowered the Tmix. The insoluble-soluble transition of the copolymers was also evidenced by dynamic light scattering and transmission electron microscopy. The biocompatible nature of the bile acids and β-cyclodextrins may make these copolymers potentially useful for biomedical applications.

Keywords: upper critical; solution; critical solution; bile acid; tunable upper; solution temperatures

Journal Title: Biomacromolecules
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.