LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Isotype Heterojunction Solar Cells Using n-Type Sb2Se3 Thin Films

Photo by kellysikkema from unsplash

The carrier-type of the emerging photovoltaic Sb2Se3 was evaluated for both thin films and bulk crystals via a range of complementary techniques. X-ray photoelectron spectroscopy (XPS), hot probe, Hall effect,… Click to show full abstract

The carrier-type of the emerging photovoltaic Sb2Se3 was evaluated for both thin films and bulk crystals via a range of complementary techniques. X-ray photoelectron spectroscopy (XPS), hot probe, Hall effect, and surface photovoltage spectroscopy showed films and crystals synthesized from the Sb2Se3 granulate material to be n-type with chlorine identified as an unintentional n-type dopant via secondary ion mass spectrometry analysis. The validity of chlorine as a dopant was confirmed by the synthesis of intrinsic crystals from metallic precursors and subsequent deliberate n-type doping by the addition of MgCl2. Chlorine was also shown to be a substitutional n-type shallow dopant by density functional theory calculations. TiO2/Sb2Se3 n–n isotype heterojunction solar cells with 7.3% efficiency are subsequently demonstrated, with band alignment analyzed via XPS.

Keywords: thin films; spectroscopy; type; heterojunction solar; isotype heterojunction; solar cells

Journal Title: Chemistry of Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.