LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Light-Controlled Selective Disruption, Multilevel Patterning, and Sequential Release with Polyelectrolyte Multilayer Films Incorporating Four Photocleavable Chromophores

Photo from academic.microsoft.com

We report photolabile polyelectrolyte multilayers (PEMs), produced by the layer-by-layer (LbL) approach, which comprise commercially available photoinert polyanions and photolabile polycations. Photochemical degradation of synthetic photolabile polycations renders these PEMs… Click to show full abstract

We report photolabile polyelectrolyte multilayers (PEMs), produced by the layer-by-layer (LbL) approach, which comprise commercially available photoinert polyanions and photolabile polycations. Photochemical degradation of synthetic photolabile polycations renders these PEMs soluble in near neutral aqueous solutions. Taking advantage of the vast array of available photocleavable chromophores that absorb different wavelengths of light with different quantum yields of photolysis, we designed four photolabile polycations (P1–P4), each containing different photocleavable groups: dialkylaminocoumarin group (P1), different nitrobenzyl groups (P2 and P3), and methoxyphenacyl group (P4). PEMs containing different chromophores dissolved selectively under different irradiation conditions. Sequential photocontrolled dissolution of multilayers from a hybrid, quadruple-compartment LBL film was demonstrated using this approach, as was photolithographic patterning of films at multiple heights using different irradiation...

Keywords: selective disruption; polyelectrolyte; photolabile polycations; controlled selective; photocleavable chromophores; light controlled

Journal Title: Chemistry of Materials
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.