Manganese-doped magnetite nanoparticles as magnetic resonance imaging (MRI) contrast agents have been well developed in recent years due to their higher saturation magnetization and stronger transverse (T2) contrast ability compared… Click to show full abstract
Manganese-doped magnetite nanoparticles as magnetic resonance imaging (MRI) contrast agents have been well developed in recent years due to their higher saturation magnetization and stronger transverse (T2) contrast ability compared to parent magnetite. However, the underlying role that manganese doping plays in altering the contrast ability of magnetite is still not thoroughly understood. Herein, we investigate the effects of manganese doping on changes of ferrite crystal structures, magnetic properties, and contrast abilities. We developed a successful one-pot synthesis of uniform manganese-doped magnetite (MnxFe3–xO4) nanoparticles with different manganese contents (x = 0–1.06). The saturation magnetization and T2 contrast ability of ferrite nanoparticles increase along with rising manganese proportion, peak when the doping level of MnxFe3–xO4 reaches x = 0.43, and decrease dramatically as the manganese percentage continues to augment. At high manganese doping level, the manganese ferrite nanoparticles...
               
Click one of the above tabs to view related content.