LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nonagglomerated Iron Oxyhydroxide Akaganeite Nanocrystals Incorporating Extraordinary High Amounts of Different Dopants

Photo from academic.microsoft.com

Dispersible nonagglomerated akaganeite (β-FeOOH) nanocrystals doped with various elements in different oxidation states such as Co(II), Ni(II), V(III), Ti(IV), Sn(IV), Si(IV), and Nb(V) were prepared using a microwave-assisted solvothermal synthesis… Click to show full abstract

Dispersible nonagglomerated akaganeite (β-FeOOH) nanocrystals doped with various elements in different oxidation states such as Co(II), Ni(II), V(III), Ti(IV), Sn(IV), Si(IV), and Nb(V) were prepared using a microwave-assisted solvothermal synthesis in tert-butanol. The doping elements could be incorporated in very high concentrations of up to 20 at. %, which is attributed to the kinetic control of the phase formation during the solvothermal reaction, together with the extremely small crystal size, which can stabilize the unusual structural compositions. The particle morphology is mostly anisotropic consisting of nanorods ∼4 nm in width and varying length. Depending on the doping element, the length ranges from ∼4 nm, resulting in an almost-spherical shape, to 90 nm, giving the highest aspect ratio. The particles are perfectly dispersible in water, giving stable colloidal dispersions that can be deposited on different substrates to produce thin films 35–250 nm thick. In addition, films up to 30 μm thick, ...

Keywords: nonagglomerated iron; incorporating extraordinary; akaganeite nanocrystals; iron oxyhydroxide; oxyhydroxide akaganeite; nanocrystals incorporating

Journal Title: Chemistry of Materials
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.