Gold nanostars (AuNSs) are receiving increasing attention for their potential applications in bionanotechnology because of their unique optical properties related to their complex branched morphology. Their sharp features allow strong… Click to show full abstract
Gold nanostars (AuNSs) are receiving increasing attention for their potential applications in bionanotechnology because of their unique optical properties related to their complex branched morphology. Their sharp features allow strong localized surface plasmon resonances, tunable in the near-infrared (NIR) region, and large enhancements of local electromagnetic fields. Here, the application of AuNSs in metal-enhanced fluorescence (MEF) in the NIR and second NIR (NIR-II) biological windows is explored for the first time. NIR/NIR-II fluorophores are incorporated onto monolayers of AuNSs with tunable plasmonic responses. Over 320-fold fluorescence enhancement is achieved in the NIR, confirming that AuNS substrates are promising NIR-MEF platforms for the development of ultrasensitive biosensing applications. Using fluorescence lifetime measurements to semiquantitatively deconvolute the excitation enhancement from emission enhancement, as well as modeling to simulate the electric field enhancement, we show tha...
               
Click one of the above tabs to view related content.