LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An A-D-A Type Small-Molecule Electron Acceptor with End-Extended Conjugation for High Performance Organic Solar Cells

Photo from wikipedia

A new non-fullerene small molecule with an acceptor-donor-acceptor (A-D-A) structure, FDNCTF, incorporating fluorenedicyclopentathiophene as core and naphthyl-fused indanone as end groups, was designed and synthesized. Compared with the previous molecule… Click to show full abstract

A new non-fullerene small molecule with an acceptor-donor-acceptor (A-D-A) structure, FDNCTF, incorporating fluorenedicyclopentathiophene as core and naphthyl-fused indanone as end groups, was designed and synthesized. Compared with the previous molecule FDICTF with the phenyl-fused indanone as the end groups, the extended π-conjugation at the end group has only little impact on its molecular orbital energy levels, and thus, the open-circuit voltage (Voc) of its solar cell devices has been kept high. However, its light absorption and mobility, together with the short-current density (Jsc) and the fill factor (FF), of its devices have been all improved simultaneously. Through morphology, transient absorption, and theoretical studies, it is believed that these favorable changes are caused by (1) the appropriately enhanced molecular interaction between donor/acceptor which makes the charge separation at the interface more efficient, and (2) enhanced light absorption and more ordered packing at solid state, a...

Keywords: end; small molecule; type small; acceptor; extended conjugation

Journal Title: Chemistry of Materials
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.