Materials exhibiting pronounced metal–insulator transitions such as VO2 have acquired great importance as potential computing vectors and electromagnetic cloaking elements given the large accompanying reversible modulation of properties such as… Click to show full abstract
Materials exhibiting pronounced metal–insulator transitions such as VO2 have acquired great importance as potential computing vectors and electromagnetic cloaking elements given the large accompanying reversible modulation of properties such as electrical conductance and optical transmittance. As a first-order phase transition, considerable phase coexistence and hysteresis is typically observed between the heating insulator → metal and cooling metal → insulator transformations of VO2. Here, we illustrate that substitutional incorporation of tungsten greatly modifies the hysteresis of VO2, both increasing the hysteresis as well as introducing a distinctive kinetic asymmetry wherein the heating symmetry-raising transition is observed to happen much faster as compared to the cooling symmetry-lowering transition, which shows a pronounced rate dependence of the transition temperature. This observed kinetic asymmetry upon tungsten doping is attributed to the introduction of phase boundaries resulting from stabi...
               
Click one of the above tabs to view related content.