LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

ROS-Sensitive Polymeric Nanocarriers with Red Light-Activated Size Shrinkage for Remotely Controlled Drug Release

Photo from wikipedia

Drug delivery systems with remotely controlled drug release capability are rather attractive options for cancer therapy. Herein, a reactive oxygen species (ROS)-sensitive polymeric nanocarrier TK-PPE@NPCe6/DOX was explored to realize remotely… Click to show full abstract

Drug delivery systems with remotely controlled drug release capability are rather attractive options for cancer therapy. Herein, a reactive oxygen species (ROS)-sensitive polymeric nanocarrier TK-PPE@NPCe6/DOX was explored to realize remotely controlled drug release by light-activated size shrinkage. The TK-PPE@NPCe6/DOX encapsulating chlorin e6 (Ce6) and doxorubicin (DOX) was self-assembled from an innovative ROS-sensitive polymer TK-PPE with the assistance of an amphiphilic copolymer poly(ethylene glycol)-b-poly(e-caprolactone) (PEG-b-PCL). Under the 660 nm red light irradiation, ROS generated by the encapsulated Ce6 were capable of cleaving the TK linker in situ, which resulted in the rapid degradation of the TK-PPE@NPCe6/DOX core. Consequently, the size of TK-PPE@NPCe6/DOX shrank from 154 ± 4 nm to 72 ± 3 nm, and such size shrinkage affected further triggered rapid DOX release. As evidenced by both in vitro and in vivo experiments, such ROS-sensitive polymeric nanocarriers with light-induced size shri...

Keywords: remotely controlled; drug; size; dox; ros sensitive; release

Journal Title: Chemistry of Materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.