LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Just Add Ligands: Self-Sustained Size Focusing of Colloidal Semiconductor Nanocrystals

Photo from wikipedia

Digestive ripening (DR) represents a powerful strategy for improving the size homogeneity of colloidal nanostructures. It relies on the ligand-mediated dissolution of larger nanoparticles in favor of smaller ones and… Click to show full abstract

Digestive ripening (DR) represents a powerful strategy for improving the size homogeneity of colloidal nanostructures. It relies on the ligand-mediated dissolution of larger nanoparticles in favor of smaller ones and is often considered to be the opposite of Ostwald ripening. Despite its successful application to size-focusing of metal colloids, digestive ripening of semiconductor nanocrystals has received little attention to date. Here, we explore this synthetic niche and demonstrate that ligand-induced ripening of semiconductor nanocrystals exhibits an unusual reaction path. The unique aspect of the DR process in semiconductors lies in the thermally activated particle coalescence, which leads to a significant increase in the nanocrystal size for temperatures above the threshold value (Tth = 200–220 °C). Below this temperature, nanoparticle sizes focus to an ensemble average diameter just like in the case of metal colloids. The existence of the thermal threshold for coalescence offers an expedient strate...

Keywords: add ligands; size; ligands self; semiconductor nanocrystals; size focusing

Journal Title: Chemistry of Materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.