LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-Quality Single-Crystalline MFI-Type Nanozeolites: A Facile Synthetic Strategy and MTP Catalytic Studies

Photo from wikipedia

A facile strategy affording high-quality single-crystalline MFI-type nanozeolites (10–55 nm) with hexagonal prism morphology, good monodispersity, high crystallinity, and high product yield (above 97%) has been developed. This is achieved… Click to show full abstract

A facile strategy affording high-quality single-crystalline MFI-type nanozeolites (10–55 nm) with hexagonal prism morphology, good monodispersity, high crystallinity, and high product yield (above 97%) has been developed. This is achieved by synergistically using an l-lysine-assisted approach and a two-step crystallization process in a concentrated gel system (H2O/Si = 9). The morphological evolution of nanosized silicalite-1 is monitored by high-resolution transmission electron microscopy (HRTEM). In this process, metastable irregular nanoparticles are initially obtained at 80 °C as the first step. Consequently, a rearrangement in morphology toward equilibrium crystal shape and without excessive growth for the metastable nanoparticles occurs at 170 °C as the second step. Throughout the whole process, l-lysine acts as an inhibitor to effectively limit the crystal growth of zeolites. Thanks to the high-quality nanosized crystals, the as-prepared ZSM-5 catalysts exhibit superior performance in methanol-to-p...

Keywords: quality; high quality; quality single; mfi type; crystalline mfi; single crystalline

Journal Title: Chemistry of Materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.