LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis, crystal and topological electronic structures of new bismuth tellurohalides Bi2TeBr and Bi3TeBr

Photo from academic.microsoft.com

Halogen substitution, that is, bromine for iodine, in the series of topological BinTeI (n = 1, 2, 3) materials was conducted in order to explore the impact of anion exchange… Click to show full abstract

Halogen substitution, that is, bromine for iodine, in the series of topological BinTeI (n = 1, 2, 3) materials was conducted in order to explore the impact of anion exchange on topological electronic structure. In this proof-of-concept study, we demonstrate the applicability of the modular view on crystal and electronic structures of new Bi2TeBr and Bi3TeBr compounds. Along with the isostructural telluroiodides, they constitute a family of layered structures that are stacked from two basic building modules, ∞2[Bi2] and ∞2[BiTeX] (X = I, Br). We present solid-state synthesis, thermochemical studies, crystal growth, and crystal-structure elucidation of Bi2TeBr [space group R3m (no. 166), a = 433.04(2) pm, c = 5081.6(3) pm] and Bi3TeBr [space group R3m (no. 160), a = 437.68(3) pm, c = 3122.9(3) pm]. First-principles calculations establish the topological nature of Bi2TeBr and Bi3TeBr. General aspects of chemical bonding appear to be similar for BinTeX (X = I, Br) with the same n, so that alternation of the ...

Keywords: topological electronic; electronic structures; bi2tebr bi3tebr; crystal topological; structures new; synthesis crystal

Journal Title: Chemistry of Materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.