Metallic lithium (Li) is a promising anode candidate for high-energy-density rechargeable batteries because of its low redox potential and high theoretical capacity. However, its practical application is not imminent because… Click to show full abstract
Metallic lithium (Li) is a promising anode candidate for high-energy-density rechargeable batteries because of its low redox potential and high theoretical capacity. However, its practical application is not imminent because of issues related to the dendritic growth of Li metal with repeated battery operation, which presents a serious safety concern. Herein, various aspects of the electrochemical deposition and stripping of Li metal are investigated with consideration of the reaction rate/current density, electrode morphology, and solid electrolyte interphase (SEI) layer properties to understand the conditions inducing abnormal Li growth. It is demonstrated that the irregular (i.e., filamentary or dendritic) growth of Li metal mostly originates from local perturbation of the surface current density, which stems from surface irregularities arising from the morphology, defective nature of the SEI, and relative asymmetry in the deposition/stripping rates. Importantly, we find that the use of a stripping rate...
               
Click one of the above tabs to view related content.