LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrophoretic Deposition of Mesoporous Niobium(V)Oxide Nanoscopic Films

Photo from academic.microsoft.com

Nb2O5 is a Li+ intercalation metal oxide that is of current interest for lithium ion battery electrodes. The electrophoretic deposition (ED) of Nb2O5 thin-films from aqueous, NbOx colloidal solutions is… Click to show full abstract

Nb2O5 is a Li+ intercalation metal oxide that is of current interest for lithium ion battery electrodes. The electrophoretic deposition (ED) of Nb2O5 thin-films from aqueous, NbOx colloidal solutions is reported here. For films ranging in thickness from 38 to 144 nm, the mass loading of Nb2O5 on the electrode is correlated with the coulometry of ED using quartz crystal microbalance gravimetry. Crystalline, phase pure films of orthorhombic, T-Nb2O5, are obtained by postdeposition calcination. These films exhibit unusually high specific capacities for Li+-based energy storage as a consequence of ≈70% porosity. For example, a 60 nm thick film displays a specific capacity, Csp, of 420 mAh/g at 5 A/g and 220 mAh/g at 50 A/g, which can be compared with the theoretical Faradaic capacity of 202 mAh/g. T-Nb2O5 films also have a specific energy density in the range from 770–486 Wh/kg, and a specific power density in the range from 9 to 90 kW/kg. These excellent energy storage metrics are attributed to augmentation ...

Keywords: mesoporous niobium; oxide nanoscopic; deposition; electrophoretic deposition; niobium oxide; deposition mesoporous

Journal Title: Chemistry of Materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.