LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Green Templating of Ultraporous Cross-Linked Cellulose Nanocrystal Microparticles

Photo from academic.microsoft.com

Cellulose nanocrystals (CNCs) are rigid rodlike nanoparticles that are derived from natural cellulose. Their high surface area, mechanical strength, and noncytotoxicity have elicited interest in their use for various applications,… Click to show full abstract

Cellulose nanocrystals (CNCs) are rigid rodlike nanoparticles that are derived from natural cellulose. Their high surface area, mechanical strength, and noncytotoxicity have elicited interest in their use for various applications, including composite and construction materials, cosmetic, food, and biomedical products. However, few methods exist to control the morphology and dimensions of assembled CNC structures in the micrometer range. Here, we use water-in-oil droplet microfluidics to template uniform spherical CNC droplets in a nontoxic and sustainable manner. Subsequent evaporation of the water within the droplets promotes the chemical cross-linking of surface-modified CNCs, resulting in ultraporous and flexible micrometer-sized particles. Changing the size of the microfluidic channel or the concentration of the CNC suspension results in microparticles with tunable sizes. The microparticles swell in polar solvents, with larger swelling observed for microparticles fabricated from less-concentrated CNC ...

Keywords: templating ultraporous; cross linked; cross; green templating; ultraporous cross; linked cellulose

Journal Title: Chemistry of Materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.