LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Machine Learning Applied to a Variable Charge Atomistic Model for Cu/Hf Binary Alloy Oxide Heterostructures

Photo from wikipedia

Alloy oxide heterostructures are essential for a wide variety of energy applications, including anticorrosion coatings, bifunctional catalysis, energy storage, as well as emerging platforms for multilevel nonvolatile memory and neuromorphic… Click to show full abstract

Alloy oxide heterostructures are essential for a wide variety of energy applications, including anticorrosion coatings, bifunctional catalysis, energy storage, as well as emerging platforms for multilevel nonvolatile memory and neuromorphic devices. The key role played by oxide composition, density, and stoichiometry in governing electrochemical reactions, interface structure, and ionic transport in alloy oxides remains largely unknown. This is primarily due to the lack of variable charge interatomic potential models that can adequately describe the various atomic/ionic interactions in alloy oxides within a unified framework. Here, we introduce a charge transfer ionic potential (CTIP) model for Cu/Hf/O alloy system and demonstrate its ability to accurately capture the complex potential energy surface owing to dynamically varying interactions, including metallic (Cu/Hf), ionic (Cu/Hf/Ox), mixed environment (interfaces). We leverage supervised machine learning methods powered by genetic algorithms coupled w...

Keywords: alloy oxide; machine learning; alloy; charge; variable charge; oxide heterostructures

Journal Title: Chemistry of Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.