LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improved Photovoltaic Efficiency and Amplified Photocurrent Generation in Mesoporous n = 1 Two-Dimensional Lead–Iodide Perovskite Solar Cells

Photo from wikipedia

We utilized two organic dications containing, respectively, a pyridinium and an imidazolium core to construct new n = 1 (where n refers to the number of contiguous two-dimensional (2D) inorganic… Click to show full abstract

We utilized two organic dications containing, respectively, a pyridinium and an imidazolium core to construct new n = 1 (where n refers to the number of contiguous two-dimensional (2D) inorganic layers, i.e., not separated by organic cations) 2D lead–iodide perovskites 1 and 2. The former material exhibits a (100)- and the latter a very rare 3 × 3 (110)-structural type. Compared with primary ammonium functionality, their constituent ring-centered positive charges have lower charge density. As a result, [PbI6]4– interoctahedral distortions of the inorganic lattice in 1 and 2 are reduced (Pb–I–Pb bond angles are as high as 166° and 174°, respectively). This results in bathochromically shifted optical features. In addition, the compact nature of the dications produces extremely short lead–iodide sheet separations, with respective iodide–iodide (I···I) distances as small as 4.149 and 4.278 A. These are among the shortest separations of adjacent lead–iodide layers ever reported for such materials. When crystal...

Keywords: efficiency amplified; photovoltaic efficiency; lead iodide; improved photovoltaic; two dimensional

Journal Title: Chemistry of Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.