LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evidence for Strong and Weak Phenyl-C61-Butyric Acid Methyl Ester Photodimer Populations in Organic Solar Cells

Photo from wikipedia

In polymer/fullerene organic solar cells, the photochemical dimerization of phenyl-C61-butyric acid methyl ester (PCBM) was reported to have either a beneficial or a detrimental effect on device performance and stability.… Click to show full abstract

In polymer/fullerene organic solar cells, the photochemical dimerization of phenyl-C61-butyric acid methyl ester (PCBM) was reported to have either a beneficial or a detrimental effect on device performance and stability. In this work, we investigate the behavior of such dimers by measuring the temperature dependence of the kinetics of PCBM de-dimerization as a function of prior light intensity and duration. Our data reveal the presence of both “weakly” and “strongly” bound dimers, with higher light intensities preferentially generating the latter. DFT simulations corroborate our experimental findings and suggest a distribution of dimer binding energies, correlated with the orientation of the fullerene tail with respect to the dimer bonds on the cage. These results provide a framework to rationalize the double-edged effects of PCBM dimerization on the stability of organic solar cells.

Keywords: butyric acid; solar cells; phenyl c61; acid methyl; c61 butyric; organic solar

Journal Title: Chemistry of Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.