LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Atomic-Level Insight into the Postsynthesis Band Gap Engineering of a Lewis Base Polymer Using Lewis Acid Tris(pentafluorophenyl)borane

Photo from wikipedia

In this report, we investigate the binding properties of the Lewis acid tris(pentafluorophenyl)borane with a Lewis base semiconducting polymer, PFPT, and the subsequent mechanism of band gap reduction. Experiments and… Click to show full abstract

In this report, we investigate the binding properties of the Lewis acid tris(pentafluorophenyl)borane with a Lewis base semiconducting polymer, PFPT, and the subsequent mechanism of band gap reduction. Experiments and quantum chemical calculations confirm that the formation of a Lewis acid adduct is energetically favorable (ΔG° < −0.2 eV), with preferential binding at the pyridyl nitrogen in the polymer backbone over other Lewis base sites. Upon adduct formation, ultraviolet photoelectron spectroscopy indicates only a slight decrease in the HOMO energy, implying that a larger reduction in the LUMO energy is primarily responsible for the observed optical band gap narrowing (ΔEopt = 0.3 eV). Herein, we also provide the first spatially resolved picture of how Lewis acid adducts form in heterogeneous, disordered polymer/tris(pentafluorophenyl)borane thin films via one- (1D) and two-dimensional (2D) solid-state nuclear magnetic resonance. Notably, solid-state 1D 11B, 13C{1H}, and 13C{19F} cross-polarization ma...

Keywords: pentafluorophenyl borane; lewis acid; polymer; lewis base; tris pentafluorophenyl; band gap

Journal Title: Chemistry of Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.