The electrochemical stability window (ESW) is a fundamental consideration for choosing polymers as solid electrolytes in lithium-ion batteries. Morphological and chemical aspects of the polymer matrix and its complex interactions… Click to show full abstract
The electrochemical stability window (ESW) is a fundamental consideration for choosing polymers as solid electrolytes in lithium-ion batteries. Morphological and chemical aspects of the polymer matrix and its complex interactions with lithium salts make it difficult to estimate the ESW of the polymer electrolyte, either computationally or experimentally. In this work, we propose a practical computational procedure to estimate the ESW due to just one dominant factor, i.e., the polymer matrix, using first-principles density functional theory computations. Diverse model polymers (10) were investigated, namely, polyethylene, polyketone, poly(ethylene oxide), poly(propylene oxide), poly(vinyl alcohol), polycaprolactone, poly(methyl methacrylate), poly(ethyl acrylate), poly(vinyl chloride), and poly(vinylidene fluoride). For each case, an increasingly complex hierarchy of structural models was considered to elucidate the impact of polymer chemistry and the morphological complexity on the ESW. Favorable agreemen...
               
Click one of the above tabs to view related content.