LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Data-Driven Discovery of Full-Visible-Spectrum Phosphor

Photo by gavinbiesheuvel from unsplash

The development of extra-broadband phosphors is essential for next-generation illumination with better color experience. In this work, we report the discovery of the first-known Eu2+-activated full-visible-spectrum phosphor, Sr2AlSi2O6N:Eu2+, identified by… Click to show full abstract

The development of extra-broadband phosphors is essential for next-generation illumination with better color experience. In this work, we report the discovery of the first-known Eu2+-activated full-visible-spectrum phosphor, Sr2AlSi2O6N:Eu2+, identified by combining data mining of high-throughput density functional theory calculations and experimental characterization. Excited by UV-light-emitting diodes (LEDs), Sr2AlSi2O6N:Eu2+ shows a superbroad emission with a bandwidth of 230 nm, the broadest emission bandwidth ever reported, and has excellent thermal quenching resistance (88% intensity at 150 °C). A prototype white LED utilizing only this full-visible-spectrum phosphor exhibits superior color quality (Ra = 97, R9 = 91), outperforming commercial tricolor phosphor-converted LEDs. These findings not only show great promise of Sr2AlSi2O6N:Eu2+ as a single white emitter but also open up in silico design of full-visible-spectra phosphor in a single-phase material to address the reabsorption energy loss in ...

Keywords: sr2alsi2o6n eu2; visible spectrum; phosphor; spectrum phosphor; full visible

Journal Title: Chemistry of Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.