LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dual-Band Luminescent Lead-Free Antimony Chloride Halides with Near-Unity Photoluminescence Quantum Efficiency

Photo from wikipedia

Low-dimensional organic–inorganic metal halide hybrids (OIMHs) with an ultrabroad-band emission are promising as downconversion phosphors for solid-state lighting. However, toxicity of Pb and low photoluminescence quantum efficiency (PLQE) hamper their… Click to show full abstract

Low-dimensional organic–inorganic metal halide hybrids (OIMHs) with an ultrabroad-band emission are promising as downconversion phosphors for solid-state lighting. However, toxicity of Pb and low photoluminescence quantum efficiency (PLQE) hamper their application. Herein, two zero-dimensional (0D) lead-free organic antimony (Sb) chloride (Cl) hybrids with dual-band emissions and PLQEs: (TTA)2SbCl5 (TTA = tetraethylammonium) and (TEBA)2SbCl5 (TEBA = benzyltriethylammonium) are reported. Both compounds show a single broad-band orange emission with a near-unity PLQE upon low-energy photons (e.g., 360 nm) excitation. The dual-band emission with an additional blue emission band upon high-energy photons (e.g., 300 nm) excitation enable (TTA)2SbCl5 to be a single-component phosphor for white light emission with a PLQE of 68%, correlated color temperature (CCT) of 2360 K and color rendering index (CRI) of 84. Based on photoluminescence spectra measurements and density functional theory calculations, the dual-ban...

Keywords: quantum efficiency; dual band; photoluminescence quantum; band; emission

Journal Title: Chemistry of Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.