LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Toward an Understanding of Deformation Mechanisms in Metallic Lithium and Sodium from First-Principles

Photo from academic.microsoft.com

Metallic lithium and sodium are actively investigated as anodes for all solid-state batteries. While the mechanical properties of Li and Na remain poorly understood, there is a growing consensus that… Click to show full abstract

Metallic lithium and sodium are actively investigated as anodes for all solid-state batteries. While the mechanical properties of Li and Na remain poorly understood, there is a growing consensus that they play a crucial role in determining the integrity of solid electrolytes. The mechanical properties of Li and Na are complicated by the rich variety of martensitic transformations that they undergo upon cooling below room temperature. Here, we develop an overarching crystallographic description that connects the high temperature bcc forms of Li and Na to the large number of close-packed phases that Li and Na transform to at low temperatures. First-principles calculations predict that Li and Na have unusually flat energy surfaces as a function of a minimal set of strain and shuffle order parameters that describe pathways between bcc and close-packed structures. Calculated generalized stacking fault energies of close-packed Li and Na phases are similarly very flat, indicating a negligible resistance to dislo...

Keywords: lithium sodium; close packed; metallic lithium; first principles

Journal Title: Chemistry of Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.