LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rapid Crystallization and Kinetic Freezing of Site-Disorder in the Lithium Superionic Argyrodite Li6PS5Br

Photo by iamthedave from unsplash

Lithium argyrodite superionic conductors are currently being investigated as solid electrolytes for all-solid-state batteries. Recently, in the lithium argyrodite Li6PS5X (X = Cl, Br, and I), a site-disorder between the… Click to show full abstract

Lithium argyrodite superionic conductors are currently being investigated as solid electrolytes for all-solid-state batteries. Recently, in the lithium argyrodite Li6PS5X (X = Cl, Br, and I), a site-disorder between the anions S2– and X– has been observed, which strongly affects the ionic transport and appears to be a function of the halide present. In this work, we show how such a disorder in Li6PS5Br can be engineered via the synthesis method. By comparing fast cooling (i.e., quenching) to more slowly cooled samples, we find that the anion site-disorder is higher at elevated temperatures, and that fast cooling can be used to kinetically trap the desired disorder, leading to higher ionic conductivities as shown by impedance spectroscopy in combination with ab initio molecular dynamics. Furthermore, we observe that after milling, a crystalline lithium argyrodite can be obtained within 1 min of heat treatment. This rapid crystallization highlights the reactive nature of mechanical milling and shows that lo...

Keywords: rapid crystallization; argyrodite; disorder; site disorder; lithium

Journal Title: Chemistry of Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.