LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Role of Surface Oxygen Vacancies in BiVO4

Photo from wikipedia

Bismuth vanadate (BiVO4) is a widely studied oxide in solar water splitting, known for its ease of synthesis, high charge extraction yields, and advantageous band alignment with water. We present… Click to show full abstract

Bismuth vanadate (BiVO4) is a widely studied oxide in solar water splitting, known for its ease of synthesis, high charge extraction yields, and advantageous band alignment with water. We present a combined first-principles and experimental study of the electronic structure of the (010) surface of BiVO4 aimed at disentangling the impact of the surface and bulk oxygen vacancies on the electronic structure and transport properties. We found that oxygen vacancies are deep donors at the surface as they are in the bulk; our calculations on defect and polaron formation energies suggest that, while polarons formed from oxygen vacancies in the bulk can contribute to conductivity, those at the surface likely do not. Our results also show that out-of-plane structural relaxations at the surface contribute to the relatively immobile nature of electron polarons derived from surface oxygen vacancies. The structural model derived from first-principles calculation was validated by comparing computed results with experimental measurements of single-crystal and epitaxially grown single-crystalline BiVO4 samples. We also found a reasonably good agreement between our calculated and measured work functions for BiVO4 samples with and without oxygen vacancies.

Keywords: role surface; surface; surface oxygen; oxygen vacancies; vacancies bivo4

Journal Title: Chemistry of Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.